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Microcavity polaritons, which at low temperatures can condense to a macroscopic coherent state, possess a
polarization degree of freedom. This paper discusses the phase diagram of such a system, showing the bound-
aries between differently polarized condensates. The Bogoliubov approximation is shown to have problems in
describing the transition between differently polarized phases; the Hartree-Fock-Popov approximation per-
forms better, and compares well to exact results that can be used in the limit where the left- and right-circular
polarization states decouple. The effects on the phase boundary of various symmetry breaking terms present in
real microcavities are also considered.
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I. INTRODUCTION

The recent experimental progress in attaining spontaneous
coherence in a thermalized degenerate gas of microcavity
polaritons1–7 has extended the range of systems in which
quantum condensation may be studied. As well as sharing
many features with previous examples of quantum conden-
sates �such as superfluid helium, cold atoms and supercon-
ductors� polariton condensates possess naturally a number of
distinguishing features �see, e.g., Refs. 8 and 9 and refer-
ences therein�.

This paper considers the combined effect of two such fea-
tures of condensed polaritons: their polarization degree of
freedom and confinement to two dimensions. Recent
works10–12 have considered some effects arising from the po-
larization degree of freedom; including a tentative phase
diagram11 derived from a zero-temperature mean-field
theory, this phase diagram implied a transition temperature
which vanished at a critical magnetic field. This paper has
two aims: first to examine more carefully the phase diagram
�critical temperature vs magnetic field� of a polarized polar-
iton condensate, this is found to be rather different to that in
Ref. 11; second to discuss how the phase diagram would be
affected by terms breaking polarization rotation symmetry
that are expected in real microcavities.

In order to discuss the effects of polarization on the po-
lariton phase diagram in the most transparent way, this paper
makes various simplifications: it considers an infinite two-
dimensional polariton system, in thermal equilibrium. In ad-
dition, the model described in Refs. 11 and 12 is used, which
is applicable in the limit of very low densities and tempera-
tures, where only the low energy part of the lower polariton
dispersion—with a quadratic dispersion—is thermally popu-
lated. At higher densities, one must take account of the non-
quadratic dispersion of lower polaritons, and the possibility
of other excitations depleting the condensate.4 These consid-
erations will change the dependence of critical temperature
on density, but the nature of the possible polarized phases
and topology of the phase diagram as a function of magnetic
field should not significantly change.

Current experiments remain some distance from this limit
of low temperature, low density, infinite, clean, equilibrium
systems. The experimental densities are at the point where

other excitations start to become relevant,4 the polariton
clouds are relatively small and their profiles strongly affected
by photonic disorder3,5,6 or trapping potentials,2 and pumping
and decay have noticeable effects.4–6 It does however remain
a useful exercise to understand how spin degrees of freedom
modify the phase diagram in the ideal system first, before
including these various extra complications, both to under-
stand the nature of the possible phases and transitions and
also to have a basis from which one can investigate the dif-
ferences introduced by pumping, decay, disorder and finite
sizes. In addition, improvements in fabrication of microcav-
ity samples can be expected to reduce the effect of disorder,
and increase the lifetime of polaritons, opening the possibil-
ity that future generations of experiments might come closer
to the idealized model discussed here. A review of how some
of these effects of disorder, pumping, decay, etc. affect co-
herence in current microcavity polariton experiments can be
found for example in Ref. 9.

II. MODEL

The polarization of the polariton can be written as a two-

component complex spinor �� ,

�� = ��x

�y
� =

l
�2

�1
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� +
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�2
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− i
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Here l and r are complex coefficients, describing the state in
the basis of left- and right-circular polarizations. The model
of Ref. 11 in this basis is

H − �N =
�2��l�2

2m
+

�2��r�2

2m
− �� + ���l�2 − �� − ���r�2

+
1

2
�U0��l�4 + �r�4� + �U0 − 2U1�2�l�2�r�2� . �2�

The term � describes a magnetic field that favors either
left- or right-circular polarization. From this point onwards,
�=1. In 2D the form of the phase diagram is controlled
by two dimensionless parameters, mU0 and �U0−2U1� /U0.
For mU0, estimates including effects of excitonic disorder4

give U0	3 �eV��m�2, and the polariton mass 1 /m
=7600 �eV��m�2 leads to mU0	4�10−4. Due to the ten-
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dency toward biexciton formation, opposite polarizations of
polaritons attract, hence 0�U0−2U1�−U0; at �=0 this im-
plies �l�= �r� describing linear polarization of light.11 For the
typical values relevant for microcavity polaritons �U0−2U1�
�U0; i.e., the interaction between left- and right-circularly
polarized light is relatively small;13 a typical estimate is
�U0−2U1�=−0.1U0. The model of Eq. �2� has been studied
in the context of atomic condensation, e.g., Ref. 14, where
topological defects and phase separation were investigated;
as discussed there, phase separation requires U1	0, so it is
not considered here.

III. CALCULATING CRITICAL TEMPERATURE

In an infinite two-dimensional system, for a single com-
ponent Bose gas, it is well known that the phase transition is
a Berezhinskii-Kosterlitz-Thouless �BKT� transition. Above
the BKT transition vortices proliferate, leading to exponen-
tially decaying correlations; below there is a nonzero super-
fluid density, and a quasicondensate density, but at long dis-
tances phase fluctuations lead to power-law decay of
correlations. To see how this is modified in a spinor Bose
gas, one needs to consider the elementary vortices of the
model in Eq. �2�. As discussed by Ref. 12, these elementary
vortices are separate vortices of left- and right-circularly po-
larized light. Thus, to a first approximation, the critical tem-
perature occurs when the phase stiffness of l or r becomes
small enough that vortices of l or r will proliferate. Note,
however, that although the elementary vortices are separate
vortices of l and r, as long as U0−2U1�0 then the long
wavelength phase fluctuations are mixtures10,11 of l and r.

When l and r vortices are independent, the critical tem-
perature at which vortices proliferate is given by 
s

l,r

= �2 /��mkBT where 
s
l,r are the phase stiffness of each spe-

cies. Section IV will show that in the absence of symmetry
breaking terms beyond the model in Eq. �2�, it is appropriate
to treat these transitions independently, and will discuss how
symmetry breaking terms modify this argument. This paper
will present the phase diagram of critical temperature as a
function of magnetic field, working at a fixed total density of
polaritons. With such an approach, to calculate the phase
boundary one will require expressions for the total density

total�� ,� ,T� of the coupled system and for the superfluid
densities for each separate polarization 
s

l,r; the following
sections will discuss calculating these quantities.

A. Decoupled case, U0=2U1

The interaction between left and right polarizations is
relatively weak, and so it is worth first considering the spe-
cial case U0=2U1 for which the polarizations decouple. This
case is simple for two reasons. First, it is clear that there are
two completely independent phase transitions associated
with BKT transitions for the l and r polarizations. Second,
one may reuse the equation of state 
1�� ,T� and critical
chemical potential �c1 for a one-component 2D Bose gas,
which allows a comparison between the exact equation of
state and various perturbative approximations.

The equation of state for a single-component Bose gas,
calculated using a Monte Carlo �MC� method, is described in

Ref. 15. In terms of the single-component equation of state,
the density for the two-component model may be written as

total�� ,� ,T�=
1��−� ,T�+
1��+� ,T�, and so the critical
temperatures at field � are the solutions of the equation


total = 
1��c1,Tc� + 
1��c1 � 2�,Tc� . �3�

In two dimensions, the equation of state can be written as

1�� ,T�=T
̃1�� /T� and the critical chemical potential scales
as �c1=xcT. Given 
̃1�x� �as shown in Fig. 1� and xc, it is
straightforward to find Tc��� for the two-component case.
The two-component equation, Eq. �3�, becomes


total = Tc�
̃1�xc� + 
̃1�xc � 2�/Tc�� 
 TcF��/Tc� . �4�

The phase boundary calculated from this equation of state is
shown by the solid line in Fig. 2. The solution as Tc→0
requires 
̃1→, which for the MC calculation occurs at a
finite and nonzero � as � /Tc→.
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FIG. 1. �Color online� Equation of state, 
�� ,T�=Tf�� ,T� for a
2D single-component Bose gas, as given by HFP approximation
and Monte Carlo results of Ref. 15. The wider spaced dots for the
lower branch of the HFP calculation are unphysical; they lead to the
corresponding wider spaced dots in Fig. 2.
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FIG. 2. �Color online� Critical temperature vs magnetic field
�both measured in units of kBTdeg=n0 /m�, at fixed total density.
Labels l, r, l+r and neither state which polarizations are superfluid.
Red solid line: Monte Carlo results valid when U1=0.5U0. Blue
dotted: HFP results for the same parameters. Green dashed: HFP for
a weak interpolarization interaction. The HFP lines at intermediate
temperatures, with wider spaced dots and dashes, are unphysical.
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Physically, the phases marked l and r correspond to pure
circular polarizations, while the phase l+r will have an el-
liptical polarization in general, and at �=0, where the den-
sities of l and r match, it will be linear. Reference 11 showed
that at T=0, at the critical � separating l from l+r, there is a
quadratic gapless mode corresponding to fluctuations of r. It
was suggested there that this mode prevents superfluidity,
and so suppresses the transition temperature to zero at this
point. However, this mode corresponds to excitations of r
which have decoupled from those of l at this point, and so a
force acting only on l can still have a superfluid response;
this is obviously the case when U0=2U1, but remains true
even for nonzero interactions.

B. General case, U0Å2U1

For U0�2U1, one would either need to perform new nu-
merical simulations or find an appropriate perturbation
scheme. The simplest scheme one might consider is the Bo-
goliubov approach, which considers only the self-energy due
to interactions with the condensate. This approach is how-
ever incapable of describing transitions such as that between
l+r both condensed and just l condensed. In the phase with
just l condensed, as �→�, the density of r will diverge, and
so the density of l �and hence the critical temperature� will
go to zero. Considering this Bogoliubov approximation as
applied to the case of U0=2U1, this zero of the critical tem-
perature can be understood as follows. If one plots the Bo-
goliubov approximation to the equation of state 
̃1�x�, there
is an unphysical divergence as x=� /T→0−, while the exact
equation of state is smooth. It is clear that an unphysical
divergence of 
̃1�x� at a finite value of x leads to an unphysi-
cal extra solution of Eq. �4� at �=0, T=0. This would pro-
duce a phase diagram like that of Ref. 11, but is an artifact of
neglecting the self-energy due to the noncondensed particles.

A better approach is the Hartree-Fock-Popov �HFP�
method, see, e.g., Refs. 16 and 17, which includes self-
energies due to the population of thermal and quantum fluc-
tuations, but neglects anomalous correlations �l†l†�, etc. By
including self-energies due to fluctuation populations, there
is no divergence of density, as a large density 
r would lead
to a large self-energy, reducing the effective chemical poten-
tial for r.

The HFP method divides each polarization into a quasi-
condensate density, 
0

l,r and fluctuation density 
 f
l,r. Both den-

sities contribute to the gap equation:

U0�
0
l + 2
 f

l� + �U0 − 2U1��
0
r + 
 f

r� = � + � , �5�

U0�
0
r + 2
 f

r� + �U0 − 2U1��
0
l + 
 f

l� = � − � . �6�

As in Ref. 17, the fluctuation density is found from the cor-
relation function �l†�x�l�0��= 
̃l�x�exp�−�l�x��. The exponent
�l�x� describes the power-law decay of correlations at long
distances, and the prefactor 
̃l�x� describes decay from 
0

l

+
 f
l at x=0 to the quasicondensate density 
0

l at intermediate
distances. Thus 
 f

l = 
̃l�0�− 
̃l��. The correlation function is
found from the effective action for density and phase fluc-
tuations. Writing l=�
0

l +�lei� l
�and similarly for r�, one

may define ��†= �� l ,�l ,� r ,�r�, in terms of which

�S = 
�,k

��†��,k�G−1��,k�����,k� ,

G−1 =�
2
0

l �k − � 0 0

� U0 +
�k

2
0
l 0 �U0 − 2U1�

0 0 2
0
r�k − �

0 �U0 − 2U1� � U0 +
�k

2
0
r

� . �7�

Because of the spinor structure, the current-current response
functions �and hence the superfluid density� have a tensor
structure. For example, left superfluid density is given by

s

l = �
0
l +
 f

l�−
n
l where 
n

l =m�T
ll is the normal density, found

from the transverse part of the current-current response func-
tion,

�ij
�� = 

�,k
Tr�G�k,���i

��k,k�G�k,��� j
��k,k�� , �8�

and �i
�, the current vertex is �for �= l�

�i
l�k,k� =

ki

m
��2 0

0 0
�, �2 = �0 − i

i 0
� . �9�

The above method gives the total density and superfluid
densities when both polarizations are condensed, and so
gives the lower temperature boundaries shown in Fig. 2. The
HFP method can also be adapted to find the higher tempera-
ture boundary between a single polarization condensate and
the normal state. Consider the case when only l is condensed;
in this case the total density is 
total=
0

l +
 f
l +
 f

r, and the gap
equation is just Eq. �5� with 
0

r =0. With a single condensate
in the HFP approximation, there is no coupling between the
fluctuations of the l and r polarizations, but only mean-field
shifts from the quasicondensate density, hence, the inverse
Green’s function for fluctuations of l is given by the top left
2�2 block of Eq. �7�. For fluctuations of r, one has 
 f

r

=knB��k+ �̃�, where �̃ incorporates both self-energy and
chemical potential, and is given by

�̃ = 2U0
 f
r + �U0 − 2U1��
0

l + 
 f
l� − �� − �� .

Eliminating � using the gap equation, Eq. �5�, this becomes

�̃ = �U0 + 2U1�
 f
r − 2U1
0

l − �U0 + 2U1�
 f
l + 2 � .

Figure 2 clearly shows that the HFP approximation cannot
accurately describe the entire phase boundary, even when
U0=2U1. Although the low temperature boundary calculated
by the HFP and exact equation of state match well, the high
temperature boundaries match less well, and worse yet the
critical temperatures do not join at �=0. This failure is be-
cause the HFP equation of state is discontinuous at the tran-
sition, and so is inaccurate when the high temperature tran-
sition is close to the critical region of the low temperature
boundary. However, far from the critical region the HFP ap-
proximation is reasonable, i.e., at least as good as the HFP
approximation would be for a single-component gas.
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Despite its failings, the HFP method is valuable. First it
shows that the effect of weak interpolarization interactions
on the critical temperature is small. Second it reveals an
intriguing property of the transverse current-current response
function at zero temperature. In a single-component conden-
sate this vanishes, meaning the entire system is superfluid.
For coupled polarizations it does not vanish, but instead one
has �T

ll=�T
rr=−�T

lr=−�T
rl�0. This identity ensures that a force

acting on the total density has a longitudinal �i.e., superfluid�
response, but a force acting on only one polarization need
not. This is expected, since there is overall Galilean invari-
ance for a change of velocity of both polarizations, but not
under changes of the velocity of just one polarization. This
zero-temperature transverse response is however small,
m�T

ll /
total�mU0, as it arises due to the quantum condensate
depletion.

IV. SYMMETRY BREAKING EFFECTS IN NONIDEAL
CAVITIES

The discussion so far is based on separate BKT transitions
associated with the proliferation of each kind of vortex; i.e.,
the effective action is that of an XY model:

S

kBT
= − 

�ij�
�Kl cos�� i

l − � j
l� + Kr cos�� i

r − � j
r�� . �10�

where Kl,r=
s
l,r / �mkBT�. This section discusses some pos-

sible corrections to this effective action that may change the
critical behavior. Three effects that are considered in detail
below are as follows. The first is short-range attraction be-
tween vortices of � l and � r due to density-density interac-
tions, which are already present in the model of Eq. �2�. The
other two effects concern reductions in symmetry present in
real cavities. Even in an ideal quantum well, the symmetry
group for zinc-blende structures is not cylindrical, but D2d
�Ref. 18�; this means there is a preferred pair of axes, and so
interactions between polarizations of light do not have com-
plete rotation symmetry.11 When there is asymmetry between
the quantum well interfaces, this symmetry is yet further
reduced to C2v,19,20 leading to a preferred linear polarization,
causing a splitting of the quadratic polarization terms. Such a
splitting can be induced by applying an electric field along
the growth direction;21 even without an applied field, such a
reduction of symmetry is observed in current experiments.1,3

These two types of symmetry reduction lead to perturbations
that prefer certain phase relationships between the l and r
fields, and so modify the order parameter space, hence
change the behavior of the phase transitions. Another type of
symmetry reduction concerns splitting between transverse
electric �TE� and transverse magnetic �TM� modes due both
to the cavity and exciton-photon coupling;8,22,23 this leads to
an interesting coupling between gradients of l and r fields,24

which may shift the transition but does not change the sym-
metry of the order parameter space so it is not considered in
detail here. Section IV A describes how the above consider-
ations should be incorporated as perturbations to Eq. �10�,
and Sec. IV B then discusses their effect on the phase bound-
ary.

A. Nature of perturbations to Eq. (10)

The short-range attraction between opposite vortices
arises because when U0�2U1, a vortex of one polarization is
associated with a density modulation of the other �see Ref.
12�. Thus a configuration with a vortex in each polarization
has a lower energy when these vortices are colocated, inde-
pendent of whether the phase windings of each polarization
are aligned or antialigned. This energy difference �E is fi-
nite, and numerical analysis for �=0 and small �2U1
−U0� /U0 gives �E /Ec� �2U1−U0� /U0, where Ec is the core
energy of a single vortex. This effect can be represented in
the Kosterlitz-Thouless scenario by ascribing a larger fugac-
ity to hybrid vortices �where both l and r wind� than to single
vortices.

The reduction of symmetry in real crystals leads to terms
that couple the phase of l and r fields. Breaking the symme-
try to D2d means there are two orthogonal preferred direc-
tions of polarization; since these orthogonal directions are
equivalent, this does not produce splitting in the quadratic
terms, but as discussed in Ref. 11, there is splitting due to
interactions that may be written as ��x�4+ ��y�4; using Eq. �1�
this is proportional to

�l + r�4 + �l − r�4 = 2��l�2 + �r�2�2 + 4�l�r + lr��2.

Breaking the symmetry yet further to C2v means favoring a
specific linear polarization, and this will introduce a splitting
at quadratic order; such a term would take the form �l�rei�0

+H.c.�. Both of the above terms can be written in the nota-
tion in Eq. �10� as a term

�Hp = �p
i

cos�p�� i
l − � i

r�� ,

where p=2 describes the reduction to D2d and p=1 the re-
duction to C2v.

B. Effect of perturbations on phase diagram

The generalization of Eq. �10�, including the perturbation
�Hp, was first discussed by Granato et al.25 They included
hybrid vortices, but only with aligned phase windings. Their
discussion is based on studying the renormalization group
�RG� flow in the Coulomb gas formulation of the model,
where the dynamic variables are the positions of vortices.
Using their formalism it is straightforward to show that when
�p=0, the effect of hybrid vortices is unimportant: while in
principle hybrid vortices can generate long-range interac-
tions between left and right vortices, this does not occur if
the energies of aligned and antialigned hybrid vortices are
equal, which is the case here.29 This means that if �p=0 the
transition is exactly the scenario assumed above, where a
BKT transition occurs if either specie of single vortex pro-
liferates.

As the hybrid vortices alone have no significant effect, the
model is exactly that discussed by Granato et al.25 Unfortu-
nately perturbative RG cannot adequately describe the model
with �Hp for p�4; the RG calculation always tends to a
phase in which some species of vortex or dual vortex prolif-
erate, and perturbation theory breaks down.26 In addition,
since one possible scenario discussed below involves two
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closely separated phase transitions, numerical approaches are
challenging, as large system sizes are needed to prevent di-
verging correlation lengths near one phase boundary mask-
ing effects of the other.27 For this reason, rather than a defi-
nite conclusion, the remainder of this paper discusses the
various possible scenarios �Fig. 3� that have been proposed
for �H2, and their consequence for the polarized condensate.
Granato et al.25 suggest two possible topologies of the phase
diagram: either the same as without �H2 �option A�, or with
a region for Kl	Kr where there is a direct transition from the
f +g condensate to the uncondensed state �option B�. Their
suggestion was based on an argument28 that when Kl=Kr

there can be only one transition. However, numerical
simulations27 of a closely related model28 suggest that at Kl

=Kr there are two close but separate transitions: a higher

temperature Ising transition where � l−� r becomes locked at
either 0 or �, and a lower temperature BKT transition where
power-law correlations of average phase occur. For polari-
tons, this scenario �option C� implies an intermediate phase
with linear polarization but no superfluidity. While polariton
experiments might discriminate between these scenarios, this
would be made difficult by the close spacing between the
transitions, and the need for large homogeneous systems to
avoid finite-size effects.

V. CONCLUSIONS

The phase diagram of polarized polariton condensate con-
tains transitions between regions of circularly polarized con-
densates and elliptical polarizations. Comparing numerical
and perturbative methods when the two polarizations de-
couple reveal limitations for the perturbative methods near
the critical point, but they suggest that weak interactions be-
tween opposite polarizations have a small effect on the phase
boundary. Terms which break the symmetry between differ-
ent linear polarizations can change the topology of the phase
diagram; such effects may however be very small, but
present the possibility of using spinor condensates for ex-
perimental investigation of the topology of this phase bound-
ary.
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